## OUR SOLAR SYSTEM

# THE GAS GIANTS: JUPITER, SATURN, URANUS, AND NEPTUNE 

## CONTENTS

AT A GLANCE ..... 4
INTRODUCTION ..... 6
A COLD, DARK JOURNEY
CHAPTER ONE ..... 12
JUPITER
CHAPTER TWO ..... 24
SATURN
CHAPTER THREE ..... 36
URANUS
CHAPTER FOUR ..... 46
NEPTUNE
Glossary ..... 58
Source Notes ..... 59
For Further Research ..... 60
Index ..... 62
Image Credits ..... 63
About the Author ..... 64

## AT A GLANCE

- The solar system formed from a giant, spinning cloud of gas and dust.
- The planets closest to the Sun are made of rock. The planets farthest from the Sun are made of gas.
- The four planets farthest from the Sun are called the gas giants. They are Jupiter, Saturn, Uranus, and Neptune.
- The gas giants have much in common. They are made of swirling gases, including hydrogen and helium. They have no solid surfaces for spacecraft to land on. They are larger than the solar system's inner rocky planets.
- Only a few space probes have visited the outer planets. Pioneer 10 and Pioneer 11 traveled to the gas giants. So did Voyager 1 and Voyager 2. Galileo and Juno traveled to Jupiter, and Cassini visited Saturn.


## NEPTUNE

N
eptune is the most distant planet in the
solar system. It is about 30.1 AU from
the Sun. Neptune can't be seen from Earth
without a telescope, so ancient people
didn't know of its existence.

Neptune was discovered in 1846. It was
the first planet discovered using math.

Scientists realized the motion of Uranus
was affected by the gravity of another
planet. They used math to figure out
where this new planet must be. When they looked in this spot, they found Neptune.

Voyager 2 captured the only close-up photos of Neptune ever taken.

This makes it the fourth-largest planet, just behind Uranus. It's about four times wider than Earth.

## BENEATH THE BLUE EXTERIOR

Neptune shares many characteristics with
Uranus. They are often called ice giants instead of gas giants because they are made up of icy materials rather than gases.

The planet's blue tint comes from traces of methane gas in the atmosphere.

Neptune is the windiest planet in our solar system, outdoing even Jupiter and its

Great Red Spot. Winds on Neptune reach


Voyager 2 spotted an enormous storm raging through Neptune's atmosphere.
up to 1,200 miles per hour (2,000 kmh).
However, the storms don't last as long as
those on Jupiter. When Voyager 2 visited
Neptune in 1989, it captured images of
a storm scientists called the Great Dark
Spot. When the Hubble Space Telescope
took pictures in 1991, the storm had
disappeared. In 2015, scientists spotted

## GAS GIANT PROPERTIES

|  | Radius | Length of Day | Length of Year | Average Distance <br> from Sun |
| :---: | :---: | :---: | :---: | :---: |
| Jupiter | 43,000 miles <br> $(70,000 \mathrm{~km})$ | 10 Earth hours | 12 Earth years | 480 million miles <br> $(780$ million km$)$ |
| Saturn | 36,000 miles <br> $(58,000 \mathrm{~km})$ | 10.7 Earth hours | 29 Earth years | 890 million miles <br> $(1.4$ billion km$)$ |
| Uranus | 15,800 miles <br> $(25,400 \mathrm{~km})$ | 17 Earth hours | 84 Earth years | 1.8 billion miles <br> $(2.9$ billion km$)$ |
| Neptune | $15,300 \mathrm{miles}$ |  |  |  |
|  | $124,600 \mathrm{~km})$ | 16 Earth hours | 165 Earth years | 2.8 billion miles |
| $(4.5$ billion km) |  |  |  |  |

Source: "Solar System Exploration," NASA, n.d. https://solarsystem.nasa.gov.
another giant storm forming on the
planet. This suggested that large storms
continuously come and go.
Neptune is denser than the other three
gas giants. Still, its density is far lower than
that of the solid Earth. Its density comes
of Neptune's rings. It also sent back
pictures of ring arcs. These are particles of
debris clumped together near the outermost
ring. The arcs form partial rings.

## WHERE IS VOYAGER 2 NOW?

Voyager 2 is the only spacecraft to visit all four gas giant planets. After Neptune, it continued its journey toward the edge of the solar system. In 1998, most of its equipment was turned off to save power. In 2018, Voyager 2 passed out of the solar system. It continued to send back information to Earth. It is so far away, signals take twenty-one hours to reach Earth. "I never in my wildest dreams thought that I would still be working on Voyager fifty years after we wrote the proposal," says Voyager researcher Stamatios Krimigis.

Quoted in Ken Croswell, "Voyager Still Breaking Barriers Decades After Launch," Proceedings of the National Academy of Sciences, April 27, 2021. https://pnas.org.

## GLOSSARY

## atmosphere

the layer of gases that surrounds a planet or star

## core

the central part of a celestial body such as a star or planet

## gravity

the natural force that causes physical things to move toward each other

## magnetic field

for a planet, the magnetic influence created by the movement of magnetic material located inside the planet

## retrograde

moving backward

## scattering

when moving particles or waves are forced out of a straight path

## trajectory

the path taken by a moving object in space

## SOURCE NOTES

## CHAPTER ONE: JUPITER

1. Quoted in "Io's Magma Ocean Provides a View into Earth's Past," Physics Today, June 29, 2011. https://physicstoday.scitation.org.
2. Quoted in "NASA's Juno: Science Results Offer First 3D

View of Jupiter Atmosphere," Mission Juno, October 28, 2021.
https://missionjuno.swri.edu.

## CHAPTER TWO: SATURN

3. James Green, "What Did We Learn from the Voyager Mission?" BBC Sky at Night, August 11, 2020. www.skyatnightmagazine.com.
4. Quoted in "NASA's Dragonfly Will Fly Around Titan Looking for Origins, Signs of Life," NASA, June 27, 2019. www.nasa.gov.

## CHAPTER THREE: URANUS

5. Quoted in Kimberly M. S. Cartier, "Uranus and Neptune Should Be Top Priority, Says Report," Eos, December 14, 2018. www.eos.org.
6. Quoted in "The Science Case for an Orbital Mission to Uranus," Planetary and Space Science, August 7, 2014. https://orbi.uliege.be.

## CHAPTER FOUR: NEPTUNE

7. Quoted in Daniel Oberhaus, "Neptune Is a Windy, Chilly, and Baffling Planet. Let's Go!" Wired, June 17, 2019. www.wired.com.

# FOR FURTHER RESEARCH 

## BOOKS

David Aguilar, Space Encyclopedia, 2nd Edition: A Tour of Our Solar System and Beyond. Washington, DC: National Geographic Kids, 2020.

Margaret J. Goldstein, Discover Jupiter. Minneapolis, MN: Lerner, 2018.

Lisa Reichley. Our Solar System: An Exploration of Planets, Moons, Asteroids, and Other Mysteries of Space. Emeryville, CA: Rockridge Press, 2020.

## INTERNET SOURCES

"Jupiter's Great Red Spot Storm Is Much Deeper Than Expected," KidsNews, November 1, 2021. https://kidsnews.com.au.
"Saturn, Planet of Rings, Moons and More to Explore," Planetary Society, 2022. https://planetary.org.

Carolyn Wilke, "Scientists Say: Gas Giant," Science News for Students, February 24, 2020. https://sciencenewsforstudents.org.

## INDEX

Adams, John Couch, 48, 55
Bode, Johann, 36
Cassini, 29, 33-34
Dragonfly, 34-35
Europa Clipper, 23
Galilei, Galileo, 18, 24
Galileo, 21-22
Galle, Johann, 48, 53, 55
Great Dark Spot, 51
Great Red Spot, 16, 19, 20, 50
helium, 14, 26, 39
Herschel, William, 36
Hubble Space Telescope, 44, 45, 51
Huygens, 33
Huygens, Christiaan, 24, 28
hydrogen, 14, 15, 26, 39
Juno, 22
Jupiter, 8, 10, 12-23, 25, 26, 29, 30, 40, 42, 44, 50-51, 52

Keeler, James, 28
Lassell, William, 53, 55
Le Verrier, Urbain-Jean-Joseph, 48, 55
magnetic fields, 22, 33
Maxwell, James Clerk, 28
methane, 34, 38-39, 50
moons, 8, 9, 18, 20, 21, 29, 30, $33-35,42,44,45,53-54,55$

Neptune, 9-10, 29, 40, 46-57
Pioneer 10, 19
Pioneer 11, 19, 31
rings, 9, 21, 25, 28-30, 31, 33, 34, 40-41, 42, 45, 55-56

Saturn, 9, 10, 24-35, 40, 42, 44, 52
storms, 10, 16, 20, 22, 51-52
Sun, 14, 16, 21, 26, 37-38, 40, 46, 48, 52
telescopes, 10, 18, 24-25, 41, 44, 45, 46, 48, 51

Uranus, 9, 10, 29, 36-45, 47, 48, 50, 52

Voyager 1, 20, 21, 32
Voyager 2, 20, 21, 32, 43-44, 51, 55-56

